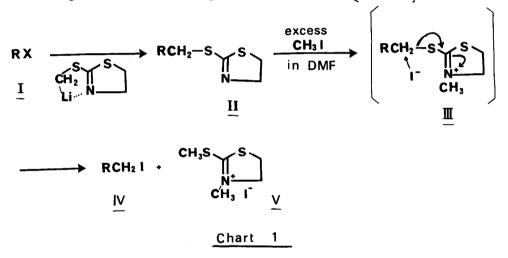
Tetrahedron Letters No. 27, pp 2743 - 2746, 1972. Pergamon Press. Frinted in Great Britain.

CHEMISTRY OF 2-SUBSTITUTED THIOTHIAZOLINE. IV.1)

A NEW SYNTHETIC METHOD FOR IODO-METHYLATION AND IODO-PROPENYLATION(ICH2C=C-)

Koichi Hirai and Yukichi Kishida

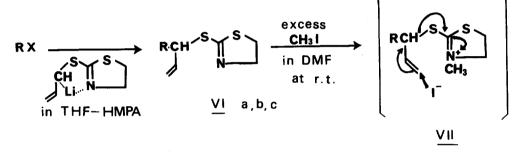

Central Research Laboratories, Sankyo Co., Ltd.,

1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140, Japan.

(Received in Japan 23 May 1972; received in UK for publication 30 May 1972)

In the course of our study into the chemistry of 2-substituted thiothiazoline, we developed new and versatile iodo-methylation and iodo-propenylation methods from the corresponding alkylhalide using 2-methyl or 2-allylthiothiazolinelithium derivative.

The sequence for the homologation is as follows [Chart 1]:



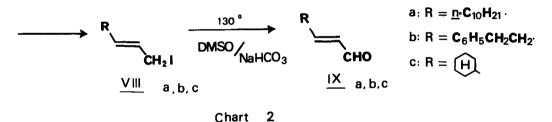

The 2-alkylthiothiazoline (1g) (II), which was prepared from alkylhalide (I) and 2-methylthiothiazolinelithium by the reported procedure²⁾ was treated with excess methyl iodide (5 ml) in dimethylformamide(DMF) (3 ml) (or DMSO, HMPA) at r.t. overnight, or heating at 70° for one hour. A homologated iodide (IV) and crystalline, water-soluble N,S-dimethyl salt (V) (mp 132°)³⁾ were produced. Extraction with ether, washing of the organic layer with 1% aq. sodium hydrosulfite solution and water successively, and evaporation of the solvent gave almost pure IV in good yield⁴⁾ (Table 1). The identity was proved by the comparison of the IR and NMR spectra with those of a reference sample.

Table 1			
	RX	RCH ₂ I	Yield % (from II)
1.	$C_{6}^{H}_{5}C_{2}^{Br}$	с ₆ ^н 5сн ² сн ² 1	75
2.	$C_6H_5CH_2CH_2Br$	с ₆ н ₅ сн ₂ сн ₂ сн ₂ г	70
3.	$\underline{n} - C_9 H_{19} C_1$	$\underline{n} - C_{10} H_{21} I$	68
4.		C6H5CH2I	82 [from 2-benzylthiothiazoline]

Application of this method to the 2-allylthiothiazoline derivatives (VI) was studied (Chart 2). For example, 2-(1-tridecenyl-3-thio)-thiazoline (VIa) [1.1 g], which was prepared from n-decyl bromide and 2-allylthiothiazolinelithium in an improved solvent system (THF:HMPA=10:1) in 70% yield, was dissolved in a solution of 5 ml of methyl iodide and 3 ml of DMF containing 10 mg of NaHCO3 and the reaction mixture was kept standing overnight at r.t. The precipitated N,S-dimethyl salt (V) was filtered off and the filtrate was poured into water. Usual working up finally gave trans-tridec-2-en-l-yl iodide (VIIIa) in 72% yield. NMR⁵ δ : 0.87 (CH₃, t.), 1.0-1.5 (CH₂x8), 1.8-2.2 (2H), 3.83 (2H, d., J=7.5 Hz), 5.5-5.9 (2H). Precise gas chromatography $\int 30\%$ DEGS on Chromosorb-W) showed the product (VIIIa) was isomer free. The IR showed strong CH₂-I absorption at 1150 and δ =CH absorption at 960 cm⁻¹ which was characteristic of the trans-configuration of the disubstituted double bond as depicted in VIII. Further VIIIa was converted to the corresponding α,β -unsaturatedaldehyde (IXa) by Kornblum reaction (three minutes).⁶⁾ IXa [M⁺ at m/e 196 $(C_{13}H_{24}O)$ showed characteristic NMR signals for the structure at δ 9.60 (1H, d. J=7.8 Hz, aldehyde H), 6.88 (1H, t. of d. J=6 and 16 Hz, β -H of $\alpha\beta$ -unsaturated aldehyde), 6.10 (1H, d. of d. 7.8 and 16 Hz, α -H) and IR bands at 1690 cm^{-1} and UV maximum at 223 nm. The coupling constant (16 Hz) clearly indicated that IXa was trans-configuration. Thus IXa was determined as transtridec-2-en-l-al $\left[2,4-\text{dinitrophenylhydrazone, mp }117^{\circ} (\text{lit. }117-119^{\circ})^{7}\right]$.

By the same procedure 2-(1-pentene-5-phenyl-3-thic) thiazoline (VIb) was also coverted to the corresponding trans-2-penten-5-phenyl-1-iodide (VIIIb) in 70% yield [NMR δ : 7.2 (5H), 5.5-5.9 (2H), 3.75 (2H, d., J=6.2 Hz), 2.2-2.8 (4H). IR γ_{max}^{film} : 1660, 1600, 1150 and 960 cm⁻¹], and to the α,β -unsaturated aldehyde (IXb) [NMR δ : 7.2 (5H), 9.52 (1H, d., J=7.8 Hz), 6.82 (1H, t. of d., J=6 and 16 Hz), 6.10 (1H, d. of d., J=7.8 and 16 Hz), 2.5-2.9 (4H). IR γ_{max}^{film} : 2720, 2830, 1690 and 1640 cm⁻¹. UV λ_{max}^{EtOH} : 221 nm. 2,4-dinitrophenylhydrazone, mp 173⁰].

In the case of secondary halide such as cyclohexyl bromide, the 2-(1propene-3-cyclohexyl-3-thio)thiazoline (VIc) was obtained in 52% yield and the convertion to the corresponding halide (VIIIc) was also effected by the same reaction conditions as VIa in 76% yield. [NMR δ : 5.4-6.0 (2H), 3.88 (2H, d., J=7 Hz), 0.9-2.4(11H). IR γ_{max}^{film} : 1650, 1150 and 960 cm⁻¹]. In this case the product (VIIIc) was also isomer free and was converted easily to the <u>trans</u>cyclohexaneacrolein (IXc) by Kornblum reaction. [NMR δ : 9.57 (1H, d., J=7.8 Hz), 6.88 (1H, d. of d. J=6 and 16 Hz), 6.10 (1H, d. of d. J=7.8 and 16 Hz), 0.9-2.4 (11H). IR γ_{max}^{film} : 2720, 2850, 1690 and 1640 cm⁻¹. UV λ_{max}^{film} : 224 nm. 2,4-dinitrophenylhydrazone, mp 215°. <u>Anal</u>. Calcd. for C₁₅H₁₈N₄0₄: C, 56.59; H, 5.70; N, 17.60. Found: C, 56.61; H, 5.70; N, 17.60.

Plausible paths for the formation of <u>trans</u>-iodo-propenylated product are described in Chart 2. The stage of attacking of I^- in an intermediate, VII, would proceed to forming thermodynamically more stable <u>trans</u>disubstituted olefins (VII).

REFERENCES

- 1). Part III: K. Hirai and Y. Kishida, Tetrahedron Letters in press.
- 2). K. Hirai, H. Matsuda and Y. Kishida, <u>Tetrahedron Letters</u>, 4359 (1971).
- 3) A.D. Clark and P. Sykes, <u>J. Chem. Soc</u>. (C), 103 (1971).
- 4) Corey and Jautelat reported the synthetic method for the homologation of primary halides using phenylthiomethyllithium, and CH_3I -NaI in DMF at 75° for 16-20 hr, but their method has its drawback due to the contamination of thioanisole in the pentane extract of the products. E.J. Corey and M. Jautelat, <u>Tetrahedron Letters</u>, 5787 (1968).
- 5) The NMR (60 MHz) spectra were taken in CDCl_3 solution and calibrated to internal standard of tetramethylsilane. Chemical shifts are expressed in ppm (δ): d., doublet; t., triplet; m., multiplet.
- 6) A.P. Johnson and A. Pelter, <u>J. Chem. Soc</u>. 520 (1964).
- 7) J. Reisch, E. Schratz and S.M.J.S. Qadry, Planta Med. 14, 326 (1966).